У меня где-то есть расчет для Нивы, там показано, что при уменьшении вылета на 40мм статическая нагрузка на ступицу увеличивается в 5 раз, нагрузка при повороте в 10.
Для Прадо цифры конечно другие, но суть одна и та же.
Саш, этот расчёт?
"Есть такие любители уродовать Ниву - они ставят на на нее волговские колеса R14 с нулевым вылетом. Клиренс, разумеется, будет меньше, но динамика машины вырастет: при меньшем радиусе R и прежнем моменте Mк сила Fкт=Fрт=Mк/R станет больше. К тому же уменьшится масса и момент инерции колес. Но в этом параграфе речь будет идти не о динамике, а о влиянии вылета колесных дисков на нагрузку ступичных подшипников и плечо обката.
Взаимодействие ступицы с колесом удобно представить силой, лежащей в плоскости симметрии колеса (т. е. в средней плоскости колеса). Вылет - расстояние между этой плоскостью симметрии и посадочной плоскостью, где диск крепится к ступице. Иллюстрирующий это рисунок взят с сайта _http://www.protcar.com:
У штатного диска Нивы положительный вылет колеса, равный 58 мм (ЕТ58), он соответствует среднему рисунку.
Сначала заметим, что устойчивость машины на дороге в значительной степени определяется величиной отношения ширины колеи к колесной базе (расстоянию между осями). Колесные диски с нулевым вылетом расширят колею на 58.2= 116 мм, что заметно ухудшит устойчивость Нивы.
А теперь разберемся с нагрузкой на ступичные подшипники. Мнение, что из-за слишком малого вылета волговских дисков подшипники приходится менять буквально на каждом ТО, в конференции существует давно. Обоснуем это утверждение.
Вспомним, как устроена ступица переднего колеса Нивы (посмотреть это можно в иллюстрированном альбоме). Нагрузку F, действующую в плоскости симметрии колеса, принимают на себя два упорных роликовых подшипника, в которых возникают силы реакции N1 и N2. Эти силы и определяют степень нагруженности подшипников:
Нагрузка F - это равнодействующая всех сил, действующих на колесо в продольной плоскости, т. е. не только вес машины, приходящийся на колесо, но и всевозможные удары при наезде на препятствия, кочки и выбоины, причем эти удары могут создавать нагрузку, на порядок большую, чем вес.
В зависимости от точки приложения силы F относительно подшипников силы N1 и N2 меняются. В принципе, подобный объект - балка на двух опорах - является предметом курса "Сопротивление материалов", но вывод расчетных формул очень прост. Достаточно применить познания из курса элементарной физики и рассматривать балку как рычаг.
Принимаем за точку опоры рычага подшипник 1. Поскольку рычаг неподвижен, моменты сил F и N2 должны уравновешивать друг друга:
F.L1=N2.L; N2=F.L1/L.
Можно составить такое же уравнение для определения N1, но удобнее использовать тот факт, что сила F в точности уравновешивается реактивными силами (результат будет тот же):
F=N1+N2.
С реальных запчастей были сняты размеры. Оказалось, что расстояние между подшипниками (по серединам) составляет 36 мм, а при штатном диске точка приложения силы F оказывается на 4 мм глубже середины расстояния между подшипниками. При штатном диске нагрузка делится между подшипниками следующим образом:
Обратите внимание, что при вылетах меньше 36 мм нагрузка внутреннего (левого на рисунках) подшипника меняет знак, а на внешнем (правом) становится больше приложенной силы F.
Получается, что при дисках с нулевым вылетом нагрузка внешнего подшипника ступицы в 5,1 раза больше, чем при штатном диске. Если за отправную точку взять нагрузку внутреннего подшипника при штатном диске, это превышение составит 3,3 раза. Отсюда и скорый выход из строя внешнего ступичного подшипника.
При поворотах автомобиля возникает боковое усилие на колесах, которое порождает крутящий момент в вертикальной плоскости, проходящей через ось оси ступицы. Момент уравновешивается парой сил реакции на ступичных подшипниках:
При поворотах автомобиля возникает боковое усилие на колесах, которое порождает крутящий момент в вертикальной плоскости, проходящей через ось оси ступицы. Момент уравновешивается парой сил реакции на ступичных подшипниках:
Величина этих сил определяется соотношением между радиусом колеса R и расстоянием между подшипниками L и от значения вылета не зависит:
F.R=N.L; N=F.R/L.
Для штатного размера колес отношение R/L=343/36=9,53, т. е. нагрузка подшипников в повороте примерно в 10 раз больше бокового усилия на колесе. На крутых поворотах это тонны...
А теперь вспомним, что такое плечо обката. Очень хорошо это иллюстрирует рисунок с сайта журнала "За рулем":
Центр зоны контакта колеса с дорогой (левые оси на рисунках) смещен относительно оси поворота колеса (правые оси, проходящие через шаровые опоры a и b) на величину плеча обката А. Поэтому для поворота колеса нужно преодолеть момент силы трения Mт=Fт.A. При увеличении плеча обката пропорционально будет расти и этот момент.
Вот данные Сергея Мишина о плече обката Нивы и Шеви-Нивы:
Модели
Вылет колеса,
мм
Величина плеча обката,
мм
Нива
58
+24
Шеви-Нива
58
0
45-48
+8-10
40
+18
Если же установить на Ниву волговские диски R14 с нулевым вылетом, то плечо обката возрастет и станет равным 24+58=82 мм, т. е. будет в 82/24=3,42 раза больше. Нельзя утверждать, что во столько же раз увеличится усилие на рулевом колесе. Оно складывается еще из моментов сил трения в рулевом механизме, маятниковом рычаге, трапеции и шаровых опорах. Но добавка будет вполне ощутимой.
Повторю здесь мысль, которую высказал AlexM (из конференции журнала "За Рулем"). Первоначально рассчитанная под штатный диск с ЕТ58 передняя подвеска ВАЗ-2123 должна была иметь нулевое плечо обката и, следовательно, минимальное усилие на руле. Превращение ее в Шеви-Ниву на колесах с дисками 15" лишило машину этого преимущества.
Короче, говоря тута читайте))) _http://www.niva-faq.msk.ru/tehnika/obsch/ustrojst/fizika/fizniv.htm